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Dust-acoustic modes in self-gravitating plasmas with dust size distributions
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Using a kinetic description, dust-acoustic waves are considered for dusty plasmas containing, besides the
electrons and ions, dust particles with continuous m@ase distributions. For broad size spectra, self-
gravitational effects cannot be neglected anymore because in the competition between electromagnetic and
gravitational forces, the scale tips over towards gravitation for the heavier dust grains. Self-gravitational effects
are clearly interwoven with the grain size distribution and here the effects of different power-law size distri-
butions on the propagation, damping, and instability of low-frequency waves are discussed.
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[. INTRODUCTION some of the basic results of kinetic theory and discuss differ-
ent size distributions, Sec. lll is devoted to the analysis of the
A consistent modeling of wave processes in dusty plasmadispersion of dust-acoustic waves for different size distribu-
runs into interesting difficulties that do not occur in standardtions, and Sec. IV summarizes our results.
plasma theory. Besides dealing with particles that can have
fluctuating charges, the dust grains come in all sizes, in an Il. KINETIC DISPERSION RELATION FOR A DUSTY
almost continuous range going from macromolecules to rock SELF-GRAVITATING PLASMA

fragment.s and asteroids. While many Papers havg tried _to Rather than repeat the standard kinetic equations, we will
account in some way for charge fluctuations, as reviewed in

straightaway make use of the very general dispersion relation

a recent book1], compgratlyely l'tt.le has' begn Fione about or electrostatic modes in a self-gravitating plasma, which
other facets of dust grains, like their distribution in mass an

size emonstrates the coupling between the plasma and gravita-

. ... tional branches of oscillations from a kinetic point of view
Many authors have considered charged dust as a I|m|tefjl3] as well as in the fluid approach, namely,

number of discrete specie@liscussed by Verheedftl]).

Rather than describing the dust as a number of discrete spe- K2(w,k)
cies, other attempts have been made to treat the charged dust e(w,k)=¢g,(w,k)+ ok =0, (&N
density as a continuous distribution over a limited size range, g3(0,K)
by u;ing a deqreasing power Iav_v. This results in a dust disg hich involves a plasma dielectric constant
tribution damping even in the fluid theofg]. In a different
vein Brattli et al. [3] considered dust size distributions from 9
a kinetic point of view, and found that Landau damping ep=1+ 2 =1, 2)
dominates at short wavelengths, whereas for larger wave- gok? @ My
lengths attenuation due to charge variations becomes more
important. Changes in dispersion relations have only beeffs analogue for a self-gravitating neutral medium
given for some of the better-known dusty plasma modes such
as dust-acoustic waves. 47G

However, when dealing with a broad size distribution, gy=1- K2 2, Mal ®)
self-gravitation could become important for the heavier dust
grains, may be even comparable in magnitude to electromagmq the coupling factor
netic forces. This implies that self-gravitational interactions
should be included into the analysis. When self-gravitation is 476G 1
incorporated into a fluid description stable and unstable = =2 Aol (4)
modifications of the dust-acoustic mode are fo(u#he 9. o k*“a

In the present paper we also focus on the analogues of the,
dust-acoustic moddd40—17 in self-gravitating plasmas, but Wt
the modifications due to the different size distributions are K.V f
studied within a kinetic description. We thus generalize our | = f ANRMUBCLPHNY (5)
previous kinetic approadi.3] to include a size distribution. ¢ w—k-v

The plan of our paper is as follows. In Sec. Il we recall ] ) ) _
We have defined for the different species with lahe$tan-

dard notationsy,, m,, andf ., for the charge, mass, and
*Permanent address: Institute of Radio Astronomy of the Nationaunperturbed distribution function, respectively.
Academy of Science of Ukraine, Chervonopraporna 4, Kharkov, We now assume that all plasma species are described by
Ukraine 310002. Maxwellian distribution functions
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N.o

RV,
(WvTa

fa0 > (6) mass and charge of a dust particle can be expressed as

UTq

02 When the standard dusty plasma model is adhered to,
)3/2 F{ ) !

with  n,, the equilibrium particle density, vy,

=+2kgT,/m, the thermal velocity,T, the temperature of
particles of typea, andkg the Boltzmann constant. Taking
all this into account, the dispersion relatid) can be written  wherep is the mass density of the grain material apgthe

4
m(a)= §7Tpa3, q(a)=4meqaey, (12)

as electric surface potential at equilibrium. Both characteristics
. are assumed to be constant and equal for all grains, to sim-
oh=1s 3 L Vrz,W(z,) plify the discussion.
SLe. 8= aseid kz)\ZDa If w>2, the equation of quasineutrality is given by
1+iJmz,W(z,) 2 w—1
o ZSid Khpahas QiNip=€nNeo+ NoQ1ﬁ, (13

" L idmwzy oD

1- — whereq; = q(amin) =4megeo@min is the charge of the smallest

a=eld k2N grains, q; the charge of the ions, aml, and n;, are the
Where unperturbed electron and ion densities.
In the case of a continuous distributid®), the discrete
2 (2 summation over different grain species in Ef.is replaced
W(z)=exp(—Z%)| 1+ \/__J exp(xz)dx> (8) by an integral, so that the dispersion law is now of the form
mJ0
is the Kramp functio14] andz,= w/kvt, a dimensionless {l D 1+iVrz,W(z,)
frequency. The characteristic Debye and Jeans lengths are P kz)\% .

defined  through \3,=eoksT./0%N, and N3,
= kBTa/47TG minaO' amaxl +1 \/;Z(a)W[Z(a)]
To investigate the influence of dust mass distributions, we +f K2\ 2 da

. . . . Amin )\Dd(a)
consider a self-gravitating plasma consisting of electrons

(with ;ubscripte), positively c_harged iqn&ubsgripti)., and ama + i \/;z(a)W[z(a)]
negatively charged dust particlesubscriptd). Since in real X 1—f >3 da
dusty plasmas dust grains can come in all sizes, in an almost 3min k“\ja(@)
continuous spectrum in a rangg,i,<a<amay (a is the dust , 2
particle sizé we introduce the differential density, which Jamax1+|\/;2(a)W[Z(a)]da
usually goes as a power-law distribution like amn  K?Apg(@)\j4(@)

ng(a)da=Ngat 'a"#da (u>0), 9) =0, (14

such that the equilibrium density of all dust grains is givenWith )\E,d(a)=sokBT/q2(a)nd(a) and Rﬁd(a)

by =kgT/4mm?(a)ny(a) denoting the analogues of the Debye
Amax and Jeans lengths, where the temperature of the dust particles
N0=f ng(a)da. (10 is assumed to be the same for all spedieig. T(a)=T
8min #Ti], z=wlkVy, z(a)=wlkvr(a), and v3(a)
=2kgT/m(a).

Along with the total number density,, we have introduced
a characteristic siza,, which due to the normalization of the
distribution functionngy(a) can be defined through

Considering waves in a self-gravitational plasma, it is
pointless to take the electron and ion gravitational interac-
tions into account because of their relative smallness, so as
always we have neglected all terms proportional)\tj)l

af ' _
(Bmin'— Amak) =1. (1) ~m; anda fortiori to A} ~m,.

p—1

If the range of sizes is fairly wide, thea,,<anay, and thus
for u>1, (ag/amin)* *=u—1 holds.

Distributions of this sort have been observed in helio-
spheric dusty plasmas, with power law indices-4.6 for In the dust-acoustic regime +(ami,) <w<kvr;, kvte, re-
theF ring of Saturn15], ©=7 [16] andx=6 [17] fortheG  sulting in inequalitiez(a,,)>1 andz,,z;<1, one can use
ring, andw = 3.6 in cometary environmenf48]. Further ref-  the asymptotic expansions for the Kramp function for small
erences are given by Meurg al. [6]. and large argumen{d.4]:

Ill. DUST-ACOUSTIC MODES IN SELF-GRAVITATING
PLASMAS
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2iz
W(Z)=1+ ——=+--;

Var

(i) |z|>1,
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V7 (amaeXd — w?/k?v3(a)]
Co=—% da,
k amin (a))\Jd(a)

c J amaxexq—wz/k%%(a)]d
=— a.
P03 Ja vT(@N (@) N pg(a)

(23

(24)

1 The dispersion law(15) is clearly very complicated. All
W(z)=——= \/— ottt +exp(—2°). these dispersion relations can be solved numerically, of
z 227 4z course, as given by Brattit al.[3] for a dusty plasma with-
- . - out self-gravitation, but including charge fluctuations. How-
Inserting these into Eq14) gives us ever, it is instructive to find analytical solutions for different
,\/—w size spectra.
o QZ A, We first deal with the imaginary part of Eq1l5), and
1+ > ﬁ_ 1+ 22| tiac, consider the integral$22)—(24). These can be written as
a=ei kA3, o? w? C,= Q[ magrexd —w’/k?v3(a)]da, with Q constant, and
a T
02 A, computed in the same way with the help of the relafib8,
x| 1+ —; 1+—)—|wcJ .
@ C,=0 a’exp(—ba®)da
QZ A | 2 Amin
+| 21+ & —iwC,,| =0, (15) +1 amax
? ? P (;b V+1/3r( T opad| (25
where the values of the effective dust plasma, Jeans, and min
hybrid frequencies are denoted by),, Q;, and whereb=w?a’k?%(a) is independent of and I'(p,x)
O, respectively are given through denotes the incomplete gamma function
2
Amax( (a) nd(a) famax,., ©
2_ — 2 — _ p—1
Qg famin egm(a) da @ a)da, (16 I'(p,x) JX exp(—t)tP~dt. (26)

min

amax ama)o-.
Q3= fa " 4mGm(a)ny(a)da= Ja | wi(a)da, (17)

Amax~ ~
Q,Z)J:f wy(a)wy(a)da
a,

min

(18)

Equations(16) and (17) define wj(a) and w3(a), and the

notationsA,, A; andAj; were introduced to represent ther-

mal corrections due to the plasma particles, namely,

3k? [@amaxe
So= 0| @iada

(19
202)a
2y= 3 [ 2@ (20
0 a)v3(a)da,
J ZQ§ min @ or
3k2 Amax~
ApJ:_zJ wy(a)wy(a)vi(a)da. (21)

8min

Finally, the coefficientsC,,, C;, andC,; of the imaginary

parts in Eq.(15) make its structure more compact and stan

for

V7 [anaeX] — 0?/k?vi(@)]

D_F 8min UT(a))\de(a)

da, (22

where w}(a)=Nog?(a)/eom(a),
dandE(a) is shorthand for

The dust-acoustic regime correspondkiq(a) <w so that
ba®=w?k??%(a)>1. Using the asymptotic expansion of
I'(p,x) for large arguments [19], one can obtain

max k2U (a)

2
Amin 3(1)

— Q v—2 3
C,= %a exp—ba)

X ex -
 KZ(a)

amax

(27)

In this approximation expression22)—(24) become very
simple, namely,

Cp=wp(a)&(@) 3™, (28)
Cy=w5(a)é(@)l3m™, (29
Cpo=wp(@) y(a)E(@)| 37 (30)

w3(a)=47GNym(a),

2\m

3w’kv(a)

Qo

pn—1 (1)2
E EX% - kzv?r(a)) . (31)

&a)=—

Using the same notations yields
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,  llag\#t  |Bmax long asama,amin- It is easily seen that whekPA3<1, the
Qp=- ; a wp(a) d (32 frequency and damping rate of the dust-acoustic mode are
min given by
1 [ag\* 7t Bmax 1 12u(1+k?\32)
02=—_— 2a‘ , 33 2_7 12112 L2y 2 \/ D
" w3(a) . (33 w; =5 K*Uga(1-k\p)| 1+ 1+—(M+3)B ,
(39
5 1 ay u-1 max
O5,= w—2\a wp(@wy(a)l (34  and, if B>12ul(u+3),
Amin
~—l7 -3/2 ﬂ & /2
and also Y= \/;kuda (1+9) (wpi+ wpeé\o’
3k2 ao ,u,—le(a)v_Zl_(a) Amax 2 B 12u
A= 2o P (35 +?\/Eex -7l VI 2| (40
P 2 ' (ut+3)B
202\ a ut3 -
where the dust-acoustic velocityy,= (2 A p has been intro-
_ duced and B is defined as B=A3/\3, with A3
3k? [a,\ * Lwi(a)vi(a) | max _ o/Ap1 AD1
Ay=——s ' % , 36)  =vF(amin)/2Q;. Obviously Q5= (u—1)w)(amn)/p since
2051 a M o u>1 andagin<amax-
Generally speaking, these equations reveal an effect of the
5 . ) A dust size distribution on the real frequency and damping rate
P 3k” [ag|* " wp(@)wy(a)vT(a) (37  Of the dust-acoustic waves. Just to show this, we compare
pJ ZQE a put+1 Egs.(39) and(40) to corresponding values when all the dust
a

min particle sizes ar@a=a,,, and the total density equald,.

o _Using the equation of charge neutrality3), we can easily
Now we are ready to look at peculiarities of dust-acousticcompute the ratios of two real frequencies or two damping
modes in dusty and self-gravitating plasmas with diffef@nt  rates for both situations, with and without size distribution.
Since bothe(w,k) and » are now complexs(w,k)=z;  without going into details, it can be shown that both ratios
+ie; and o= +iy, we will make the usual assumption are approximately characterized by the same small depen-

that|w;[>[y| and|e[>|e;]. . dence onu, namely, ~(u—2)/u. However, the relative
We first of all consider a dusty plasma without self- yamping ratey/w, for dust-acoustic modes in dusty plasmas
gravitation €2;=0=(),), and hence the coefficients;,  with a power-law dust size distribution is almost independent

Apy, Cy, and Gy, are equal to zero. Then the dispersion of n(a), similar to what was obtained i8].

re_:lat_lon _for (_1ust-ac0ust|c m_odes in a plasma with a dust size Returning now to the general case of self-gravitating plas-
distribution is recoverefi3], in the case when constant dust mas, it is easy to verify that the structure of Eb5) becomes
charges are assumed. Numerical computati@sseem to  even more dependent gnbecause of the gravitationaf);,
indicate that the power-law distribution of dust particle Sizesp ) and hybrid terms Q,;, A,y). Of course, we suppose
leads to a negligibly small effect on the Landau dampingthat ;» does not equal one of the critical values occuring in
when the upperdpa.,d and lower @nin) dust sizes are ad- the expression&l6)—(21), but these can easily be dealt with
justed so that the average particle sizes are the same as & taking the appropriate limiting expressions. Whereas the
sumed in a monosized distribution. We consider a size SPe¢slasma termg16) and (19) are always determined by the
trum (9), whenap,eamin andu>1, and can then give some gmajlest particlesd,,), an effective Jeans frequency?)
analytical expressions. The dispersion relatip6) thus be-  and the hybrid frequency is determined by either the smallest

comes or largest grains, depending on the magnitudg oSince for
amin<amax
1+1[1+i\/;w 1+5) 2
P T M= Ami
K3l k(1+8) vt vre ngng(amm) 1- a:'a:) } (42)
QS( 1+3uk2v$<amm>)+ 2imuQ} - o aa
0?7 2(p+3)0? | 3wkvr(ami) e R TCI E il P } (42
maxi
X ex ——wz =0, (38 2 u—1 Amin w2
kzv$(amm) QpJ:Ewp(amin)“)J(amin) 1- A, , (43

with A\p?=Npi+\p? andd=A3;/\3,. Note that the disper- it turns out that ifu>4, the results for); and Q,; are
sion law is insensitive to the upper limit of integration as weighted towards the smaller sized particles, which are more
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abundant. And vice versa, the upper limi,{,) becomes mains smaller than 50L3]. Then the damping rate is modi-
dominant for an effective Jeans frequency wher4, and fied by self-gravitational effects. The latter can lead to a
for the hybrid term whenu<2. Bearing in mind the obser- considerable growth of the damping of the dust-acoustic
vational data concerning dust distributions in real dustymode in a monosized plasnjd3]. Now we examine the
plasma objects, the casgs>4 and 2< u<4 are of a special influence of the size distribution on the damping rate of the
interest. dust-acoustic mode. The self-gravitational terms in @)

We first deal with the case>>4 and consider the real part are proportional to
of the general dispersion equati¢ts), neglecting for sim-

plicity the small thermal terms. In the dust-acoustic regime,  Q3(1—C) w2(8pmin) 4
this reduces to = - .
UG KAbop@m)(w—4) " (u—2)°
o= w?(k?U3,— 07— Ck2U3,05=0, (44) (49

whereC=4/(.—2)2. As the product of the roots of E¢4) This reveals the effect og of different u in the size distri-
for w? is negative, there is always one positive solution forbution power law. From the last expression, it is quite obvi-
»?, corresponding to a stable mode, as well as a purelpus that for values gfi~5-7 the contribution of this term is
imaginary mode for whicho2<0. rather enhanced due to the size distribution. Only for very
In the case of a self-gravitating plasma when a dustlarge »>10 does the dependen¢49) tend to 1, and the

acoustic mode occursduﬁ >02), the roots are given by influence of the dust distribution, consequently, is of little
am o importance.

w?=k?U3,—Q3(1-C) (45) The negative roo(46) gives rise to a weakly unstable
mode, the frequency of which is completely definedbyn
and the dust size distribution. This mode is hence a dust distri-
5 5 bution instability. This repeats the results of Mewgtsal.[6],
wy=—CQJ. (46)  because if one replaces the double summation in their equa-

! ) ) ) . tion (32) by a double integral this matches our equaiié4).
The first solution gives a generalized dust-acoustic WaveFoIIowing the notations of Meuriet al. [6] k2U§ >Q§ COr-
" a

The dust distribution tends to reduce the effective Jeans frer'esponds to their conditioA> B

quency and thereby increase the phase velocity of this mode. Next we consider the opposite case, whdbi?,<02. In

When the thermal effects are incorporated into the analysis[his limit, the self-gravitational effects dominate and the

one finds a slight correction for the dust-acoustic branch
(45), so that roots of(44) are of the form

3u wi=—-05+k?U3,(1-C) (50)
wi=k?U3 | 1+ (3+—)) —Q3(1-0C). (47)
mpB and
It is readily verified that this mode is always damped. We do 2 -
not give the details, because this becomes very repetitive, but w5=CkUg,. (51

one can obtain the damping rate as L . N ) -
The mode withw“<0 gives a modified Jeans instability, and

- Q. 0 a dust size distribution tends to increase its growth rate,
y=—\ gkUaa] (1+ 83 L+ —pb\Q”z) whereas the solutiom?>0 is a stable mode, which does not
@pi Dpe exist in the case of monosized dust distribution. This mode is
always damped with a decrement
LB L 1( 3 ) pQ3(1-C)
3 2\pn+3 2k2U3, ™ —ag o o g
y=—\/5KUgal (1+8) 3 —+ —5%2
(48 8 Wpi  Wpe
Although these relations bear a resemblance to the damping 2u\B _ %
: . + ex . (52
rate of the dust-acoustic way40), one can see the influence 3 2

of self-gravitational effects on the growth of the damping
rate if the exponent in the size distribution increases. Only ifQualitatively similar results are obtained by Meueisal.[6]
the special case when dealing with very large valueg,of in the fluid description, when the dust-acoustic waves are
the first term between brackets in E@8) dominates and treated in a plasma with a number of discrete charged and
thus, the effect of self-gravitation on the damping rate dimin-neutral dust species. However, the damping effect for differ-
ishes, and the latter reduces to the monosized dust(é@se ent modes is not included in the fluid approdéh

Hence, it is more interesting when we restrict our analysis Finally, the discussion about dust-acoustic modes in self-
to those values oB for which the second term of E§48) gravitating plasmas can be rounded off by looking at the case
prevails. With regard to possible parameters of self-when the exponent in the size distribution is sufficiently
gravitating plasmas, it is quite realistic to assume fhat- small, i.e., Z <4, and the heavier particles determine the
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gravitational terms in the general dispersion l&8). In this  tive comparisons for potentially interesting configurations

limit the dispersion relatiori44) is still valid but the values like molecular clouds.

of Q§ and C change to The general kinetic dispersion law for electrostatic modes,
which is quite complicated, was adapted to inertialess elec-

Qz_ﬂ— 1, a ) Amax| (59) trons and ions. We then discussed several, practically, impor-
Y 4—p @3(@min Amin ' tant size distributions. A detailed study of the longitudinal
waves has been made in the dust-acoustic regime, including
w(d— ) amin| 4 * the plasma and gravitational modes, their damping and
C=l-—+ a =1. (54 growth rates.
(k=2) max Although some of the results, like the dust distribution
There is now an almost complete factorization of Eg), instability and a stable mode due to the size spectrum of the

dust particles, corroborate what was obtained in the fluid
model[6], the inclusion of a size distribution into a kinetic

(02— K2U2)(0?+02)=0, (55  analysis demonstrates a novel property of such media.
Whereas the effective plasma terms are always weighted to-
and the plasma and gravitational disturbances decouple andards the smallest particles, which are more abundant, the
can develop almost independently. effective Jeans and hybrid terms can be determined by either
Thus, the remarkable property of self-gravitating plasmaghe smallest or the largest grains, depending on the precise

is that the results are strongly dependent on the exponent Blope of the power-law distribution. As a result, the coupling

viz.,

the size distribution of the dust particles. between the plasma and gravitational waves can be strongly
dependent on the parameters of the power-law distribution.
IV. RESULTS We investigated damping effects for analogues of dust-

) ) acoustic modes, to show whether a power-law distribution of
In many astrophysical dusty plasmas, the size of the dusjust-particle sizes influences the Landau damping or not, and
components spans a wide range. For this reason, we genggund that for certain parameter values there can be a con-

alized the kinetic approach to low-frequency modes in selfsjderable damping, completely specified by self-gravitation.
graVIIatlng plasmaS with a size distribution. FOlIOWIng Obser'ThiS effect never occurs in usual dusty p|asma5.

vational results, we modeled a size distribution as a
descending power law in a range of particle sizes, as ob-
served in various heliospheric plasmas. For planetary rings
the self-gravitational effects are usually much less important
than the gravitational attraction of the planet itself. Unfortu-  This work was supported by the Bijzonder Onderzoeks-
nately, not enough is reliably known about dust size andonds of the RUG through foreign visitdiV.V.Y.) and re-
mass distributions outside the solar system to give quantitasearch(F.V. and G.J. grants.
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